This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA Terms of Service and Legal Notices
Industrial Organization Theory and Applications Oz Shy The MIT Press Cambridge, Massachusetts London, England
Copyright © 1995 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. This book was typeset by the author using the LATEX document preparation software developed by Leslie Lamport (a special version of Donald Knuth's T EX program) and modified by the LATEX3 Project Team. All figures are drawn in LATEX using TEXcad by developed by Georg Horn and Jörn Winkelmann. The book was complied using emTEX developed by Eberhard Mattes. Camera-ready copy was produced by Type 2000, Mill Valley, California, and the book was printed and bound by The Maple-Vail Book Manufacturing Group, Binghamton, New York. Library of Congress Cataloging-in-Publication Data Shy, Oz. Industrial organization: theory and applications / Oz Shy. p. cm. Includes bibliographical references and index. ISBN 0-262-19366-3 (hc : alk. paper). — ISBN 0-262-69179-5 (pb : alk. paper) 1. Industrial organization (Economic Theory) 2. Industrial organization -Case studies I. title HD2326.S565 1996 338.7-dc20 95-32647 CIP Fourth printing, 1998
For my mother, Hadassa Shy and in memory of my father, Asher Shy
CONTENTS List of Figures
1.1 The Study of Industrial Organization
1.2 Law and Economics
1.3 Industrial Organization and International Trade
I Theoretical Background 2 Basic Concepts in Noncooperative Game Theory
2.1 Normal Form Games
2.2 Extensive Form Games
2.3 Repeated Games
2.4 Appendix: Games with Mixed Actions
2.5 Appendix: Games with Imperfect Information
3 Technology, Production Cost, and Demand
3.1 Technology and Cost
3.2 The Demand Function
3.3 Appendix: Consumer Surplus: Quasi-Linear Utility
II Market Structures and Organization
4 Perfect Competition
4.1 Non-Increasing Returns to Scale
4.2 Increasing Returns to Scale
4.3 Marginal-Cost Pricing and Social Welfare
5.1 The Monopoly's Profit-Maximization Problem
5.2 Monopoly and Social Welfare
5.3 Discriminating Monopoly
5.4 The Cartel and the Multiplant Monopoly
5.5 Durable-Goods Monopolies
5.6 Appendix: The Legal Approach
6 Markets for Homogeneous Products
6.1 Cournot Market Structure
6.2 Sequential Moves
6.3 Bertrand Market Structure
6.4 Cournot versus Bertrand
6.5 Serf-Enforcing Collusion
6.6 International Trade in Homogeneous Products
6.7 Appendix: Cournot with Heterogeneous Firms
7 Markets for Differentiated Products
7.1 Two Differentiated Products
7.2 Monopolistic Competition in Differentiated Products
7.3 "Location" Models
7.4 Appendix: Inverting Demand Systems
7.5 Appendix: Equilibrium in the Linear City
8 Concentration, Mergers, and Entry Barriers
8.1 Concentration Measures
8.3 Entry Barriers
8.4 Entry Deterrence
8.5 Contestable Markets
8.6 Appendix: Merger and Antitrust Law
8.7 Appendix: Entry Deterrence and Antitrust Law
III Technology and Market Structure
9 Research and Development
9.1 Classifications of Process Innovation
9.2 Innovation Race
9.3 Cooperation in R&D
9.5 Licensing an Innovation
9.6 Governments and International R&D Races
9.7 Appendix: Patent Law
9.8 Appendix: Legal Approach to R&D Joint Ventures
9.9 Mathematical Appendix
10 The Economics of Compatibility and Standards
10.1 The Network Externalities Approach
10.2 The Supporting Services Approach
10.3 The Components Approach
IV Marketing 11 Advertising
11.1 Persuasive Advertising
11.2 Informative Advertising
11.3 Targeted Advertising
11.4 Comparison Advertising
11.5 Other Issues Concerning Advertising
11.6 Appendix: Advertising Regulations
12 Quality, Durability, and Warranties
12.1 Personal Income and Quality Purchase
12.2 Quality as Vertical Product Differentiation
12.3 Market Structure, Quality, and Durability
12.4 The Innovation-Durability Tradeoff
12.5 The Market for Lemons
12.6 Quality-Signaling Games
12.8 Appendix: The Legal Approach to Products Liability
13 Pricing Tactics: Two-Part Tariff and Peak-Load Pricing
13.1 Two-Part Tariff
13.2 Nonuniform Pricing
13.4 Can Firms "Control" the Seasons?
14 Marketing Tactics: Bundling, Upgrading, and Dealerships
14.1 Bundling and Tying
14.2 Killing Off Markets for Used Textbooks
14.4 Appendix: The Legal Approach to Tying
14.5 Appendix: Legal Approach to Vertical Restraints
V The Role of Information
15 Management, Compensation, and Regulation
15.1 The Principal-Agent Problem
15.2 Production with Teams
15.3 Competition and Managerial Compensation
15.4 Why Executives Are Paid More than Workers
15.5 Regulating a Firm under Unknown Cost
16 Price Dispersion and Search Theory
16.1 Price Dispersion
16.2 Search Theory
16.3 Mathematical Appendix
VI Selected Industries
17 Miscellaneous Industries
17.1 Restaurant Economics
17.2 The Airline Industry
17.3 The Fishing Industry
17.4 Public Roads and Congestion
FIGURES 2.1 The pilot and the terrorist
2.2 Two proper subgames
2.3 Best-response functions for the mixed-action extended game
2.4 A game with imperfect information: Information sets
2.5 Game with imperfect information: Subgames
2.6 Battle of the Sexes in extensive form
3.1 Total, average, and marginal cost functions
3.2 Duality between the production and cost functions
3.3 Inverse linear demand
3.4 Inverse constant-elasticity demand
3.5 Consumers' surplus
3.6 Demand generated from a quasi-linear utility
II.1 Commonly assumed and used market structures
4.1 Competitive equilibrium under constant returns to scale
4.2 Decreasing average cost technology
4.3 Marginal-cost pricing and social welfare
5.1 The monopoly's profit maximizing output
5.2 Monopoly and social welfare
5.3 Monopoly discriminating between two markets
5.4 Durable-good monopoly: the case of downward sloping demand
5.5 Durable-good monopoly: the case of discrete demand
5.6 Two-period game of a durable-good monopoly facing discrete demand
6.1 Cournot best-response functions
6.2 Edgeworth Cycles: Bertrand competition under capacity constraints
6.3 Residual demand when firms have fixed inventories
6.4 IL's import level under a uniform tariff
6.5 IL's import under the FTA
6.6 The welfare effects of the free-trade agreement
7.1 Approaches to modeling differentiated-products industries
7.2 Measuring the degree of product differentiation
7.3 Best-response functions for quantity competition in differentiated products
7.4 Best-response functions for price competition in differentiated products
7.5 CES indifference curves for N = 2
7.6 Decreasing average-cost technology
7.7 Hotelling's linear city with two firms
7.8 The position of firms on the unit circle
7.9 Sequential-location game
7.10 Discrete-location model
7.11 Undercutproof equilibrium for the discrete-location model
7.12 Existence of equilibrium in the linear city
8.1 Upstream factor suppliers and downstream producers
8.2 Sunk costs and entry barriers
8.3 Sunk-cost entry barriers with partial cost recovery
8.4 Incumbent's profit levels and capacity choices for different levels of entry cost.
8.5 Capacity accumulation and marginal cost
8.6 Relaxing the Bain-Sylos postulate
8.7 Best-response functions with fixed capacity
8.8 Capital replacement and entry deterrence
8.9 Judo economics: How an entrant secures entry accommodation
8.10 Two-period, signaling, entry-deterrence game
8.11 Contestable-markets equilibrium
9.1 Classification of process innovation
9.2 R&D race between two firms
9.3 Gains and losses due to patent protection
10.1 Deriving the demand for telecommunication services
10.2 The PTT profit function in the presence of network externalities
10.3 Two-standard (incompatibility) equilibrium
10.4 Consumers' distribution of tastes
10.5 Equilibrium variety of brand-specific software
11.1 Consumer surplus for a given persuasive-advertising level
11.2 Equilibrium number of firms placing ads
11.3 Targeted advertising: Experienced versus inexperienced consumers
11.4 Informative versus persuasive advertising
11.5 Advertising-induced demand increase and falling prices
12.1 Horizontal versus vertical differentiation
12.2 Vertical differentiation in a modified Hotelling model
12.3 Determination of the indifferent consumer among brands vertically differentiated on the basis of quality
12.4 Innovation and durability
12.5 The market for lemons: Bad cars drive out the good cars
13.1 Quasi-linear utility indifference curves
13.2 Pure two-part tariff club charges
13.3 Nonuniform pricing and price discrimination
13.4 Nonuniform price schedule
13.5 Seasonal demand structure and monopoly peak-load pricing
13.6 Cost structure of a monopoly selling services in two periods
13.7 Revenue functions for the vertical and horizontal differentiation cases
14.1 Bundling monopoly
14.2 Territorial dealerships in the linear city
15.1 Optimal contract under asymmetric information
15.2 Manager's best-response function
16.1 Consumers with variable search cost searching for the lowest price
16.2 The determination of the discount and expensive prices
16.3 Prices in a consumer-search model
16.4 Reservation-price strategy
17.1 The equilibrium restaurant price
17.2 Fully connected (FC) and hub-and-spoke (HS) networks
17.3 Evaluation of airfare regulation
17.4 Equilibrium versus optimal highway congestion
PREFACE If we knew what it was we were doing, it would not be called research, would it? —A. Einstein
Motivation for Writing This Book The motivation for writing this book grew from several years of teaching undergraduate and graduate industrial organization and international trade courses at SUNY -Albany, Tel Aviv University, and the University of Michigan. I felt that for both important fields in economics, no theoretical book targeted advanced undergraduate and beginning graduate students. Therefore, I was guided by my belief that there should not be any necessary correlation between mathematical complexity and theoretical precision. That is, the purpose of this book is to bring to the advanced student the basic and the latest developments in industrial organization in a very precise manner, but without resorting to advanced mathematical techniques. By precise I mean that the various market structures and equilibria—and optimal allocations as well as the rules by which firms and consumers actually behave—are always carefully defined. I feel that a student of a theoretical course should be able to make precise definitions of what agents actually do, and that teaching the student how to precisely define the environment and market structures has nothing to do with getting more mathematical training. That is, I have attempted to precisely define the equilibria and the models despite the fact that the models are solved for specific examples with no mathematical generality.
The Level and Prerequisites My intention is to make this book readable to undergraduates who have some training in microeconomics using calculus. However, in some in-
stances, this course can be taught without using calculus (see the list of topics in the next section). Before reading this book, the student should have some experience in maximization techniques for oneand two-variables optimization problems. Occasionally, the student will have to have a very basic knowledge of what probability is and how to calculate the joint probability of two events. Nothing in this book requires methods more advanced than the ones I have described. Students who did not have any training in microeconomics using calculus may not be able to handle several of the market structures. The reader questioning whether this book fits his or her level is advised to look at chapter 3, which reviews the basic microeconomics needed for a comprehensive study of industrial organization.
Industrial Organization without Calculus Writers of good textbooks should attempt to base most of their arguments on simple logic rather than on long (or short) derivatives. In that respect, I admit that I failed to provide the reader with a completely free of calculus book for a very simple reason: most of our research and publications are based on calculus, and each time I attempted to avoid using calculus, I had to reproduce the theory instead of using an existing one. The following, however, is a list of topics that are analyzed without the use of calculus: Basic Concepts in Game Theory: Chapter 2 Durable Goods Monopolies: Subsection 5.5.2 Perfect Competition: Chapter 4 Self-Enforcing Collusion: Section 6.5 Bertrand Price Competition: Section 6.3 Preferential Trade Agreements among Countries: Subsection 6.6.2 Sequential Entry to the Linear City: Subsection 7.3.3 Calculus-free Location Model: Subsection 7.3.4 Concentration Measures: Section 8.1 Entry Barriers: Section 8.3 Investment in Capital Replacement: Subsection 8.4.3
Credible Spatial Preemption: Subsection 8.4.5 Limit Pricing as Entry Deterrence: Subsection 8.4.6 Process Innovation: Section 9.1 Innovation Race: Section 9.2 Licensing an Innovation: Section 9.5 International Subsidies for New Product Development: Subsection 9.6.1 The Economics of Compatibility and Standards: Chapter 10 (excluding subsection 10.1.1) Advertising: Chapter 11 (excluding section 11.1) Quality, Durability, and Warranties: Chapter 12 (excluding section 12.2) Pricing Tactics: Chapter 13 (excluding section 13.4) Bundling and Tying: Section 14.1 (excluding subsection 14.1.6) Market Segmentation: Subsection 14.1.5 Killing Off Used Textbook Markets: Section 14.2 Territorial Dealerships: Subsection 14.3.3 The Principal-Agent Problem: Section 15.1 Regulating a Firm under Unknown Cost: Section 15.5 Why Executives Are Paid More than Workers: Section 15.4 Search Theory: Section 16.2 Restaurant Economics: Section 17.1 Multiproduct Firms: Subsection 17.2.1 Price Regulation: Subsection 17.2.3 Law and Economics Appendixes: Most chapters conclude with non-technical appendices discussing the major legal issues and laws concerning the topics analyzed in the body of the chapter.
To the Instructor Since this book grew out of lecture notes written for upper-division undergraduate and graduate courses, the instructor will (I hope) find this book convenient to use, since almost all derivations are done in the book itself. If you are constrained to instruct a course without using calculus, then you can teach the list of topics given earlier. If you can use some calculus, then the amount of material that you can cover depends on your preferences and the length of the course. All the theoretical background the student needs for a comprehensive study of this book is provided in the first part. In fact, not all the material covered in this part is needed to study this book, but it is brought up here for the sake of completeness, or for those readers who have either an insufficient background in economics or none at all. Therefore, the instructor is urged to decide on how much time to devote to this preparation part only after having completed the entire plan for this course. This theoretical preparation is composed of two chapters. Chapter 2 provides all the necessary game theoretic tools needed for the study of this book and for understanding the literature on industrial organization. Background in game theory is not needed for reading this chapter, and no previous knowledge is assumed. The main sections of chapter 2 must be taught before the instructor proceeds with the study of industrial organization. Chapter 3 provides most of the basic microeconomics background needed for the study of industrial organization. The material covered in this chapter is studied in most intermediate microeconomics and in some managerial economics courses and can therefore be skipped. Two-semester course A two -semester course can be logically divided into a more technically market-structure-oriented semester, and an application-oriented semester. Thus, the first semester should start with game theory (chapter 2), continued by the sequence of three chapters dealing with market structure: perfect competition (chapter 4), monopoly (chapter 5), homogeneous products (chapter 6), and differentiated products (chapter 7). If time is left, the first semester may include mergers and entry (chapter 8) and research and development (chapter 9). For the second semester, the instructor is free to select from a wide variety of mostly logically independent topics. A possible starting point could be the theory of network economics and standardization (chapter 10), continuing with selected topics from the remaining chapters:
advertising (chapter 11), durability and quality (chapter 12), pricing tactics (chapter 13), marketing tactics (chapter 14), management and information (chapter 15), price dispersion and search theory (chapter 16), and the special industries (chapter 17). One-semester course A common mistake (at least my mistake) in planning a one-semester course would be to treat it as the first semester of a two-semester course. When this happens, the student is left with the wrong impression that industrial organization deals only with the technical formulation of market structures, yet without the knowledge that industrial organization has a lot to say about product design, marketing techniques, and channels (chapters 11, 12, 13, 14, 15, and 17). These chapters have many less technically oriented sections, with direct applications. Some sections rely on the knowledge of Cournot, Bertrand, and sometime Hotelling's market structures, and for this reason, in a one-semester course, I advise the instructor to carefully plan the logical path for this course. Finally, the material on search theory (chapter 16) can be covered with no difficulty. Let me summarize then: the two -semester course fits the structure and the depth of the coverage of this book. The instructor of a one-semester course using this book should study the list of topics covered in the later chapters, and then, working backwards, should determine what is the minimal knowledge of market structures that students need to acquire in order to be able to understand the later chapters.
New Material Almost by definition, a textbook is not intended for presenting newly developed material and ongoing research. However, during the course of simplifying I was forced to modify or to develop some new concepts. For example, I felt that it is important to include a location model without using calculus for those courses that do not require the use of calculus. However, as the reader will find, a Nash-Bertrand equilibrium for the discrete location model simply does not exist. For this reason, I was forced to develop the undercutproof equilibrium concept described in subsection 7.3.4 on page 158. Three other topics are also new: (a) the concept of -foreclosure developed in subsection 14.1.4 on page 366, (b) endogenous peak-load pricing theory (section 13.4 on page 352) that emphasizes the role of the firm in determining which period would be the peak and which would be the off-peak, and (c) targeted and comparison advertising theory (sections 11.3 on page 290 and 11.4 on page 294).
Typesetting and Acknowledgments The book was typeset during the months from June 1993 to July 1994 (Tel Aviv University) and from August 1994 to August 1995 (University of Michigan). The reader will notice that this book does not have any footnotes. Writing a book with no footnotes imposes a significant constraint on the writer, because footnotes enable the integration of quasi-related topics into a text. However, I felt that footnotes impose a great inconvenience to the reader because they tend to disturb the natural flow of reading. For this reason, I decided to eliminate them. As boring as it may sound, the following cliché is the whole truth and nothing but the truth: Without the help of the people listed below, I would not have been able to complete writing this book! Therefore, I thank: Igal Hendel (Princeton), who was the first person to read the very first draft of several chapters; Val Lambson (Brigham Young), who was the first to test this manuscript in an undergraduate industrial organization class at BYU and was the first to report a success with teaching this material to undergraduates in the United States; Tomer Bloomkin (a doctoral student at Tel Aviv), for reading the manuscript several times and providing many comments and many suggestions throughout that year; Henrik Horn (Stockholm University), for a great many comments and suggestions and for testing the manuscript in a short undergraduate course at Stockholm University; Sougata Poddar (a doctoral student at CORE); Stephen Salant (Michigan) for a great many comments and illuminating discussions; Yossi Spiegel (Tel Aviv), five anonymous reviewers for The MIT Press, and my undergraduate industrial organization and international trade students at Tel Aviv and Michigan. I thank Mike Meurer (SUNY-Buffalo), Christopher Proulx (Michigan), Ennio Stacchetti (Michigan), and Abi Schwartz (Tel Aviv), for providing me with comments on selected topics. Needless to say, I am the only one responsible for all the remaining errors. I also would like to thank Martin Osborne (McMaster) and Hal Varian (Berkeley) for their most helpful advice and Tianlai Shy for all her help. During the preparation of the manuscript, I was very fortunate in working with Ann Sochi of The MIT Press, to whom I owe many thanks for managing the project in the most efficient way. Finally, I thank the entire MIT Press team for a fast production of this book. ANN ARBOR, MICHIGAN (AUGUST 1995) [email protected]
Chapter 1 Introduction The purpose of an economic theory is to analyze, explain, predict, and evaluate. —Gathered from Joe Bain, Industrial Organization
1.1 The Study of Industrial Organization 1.1.1 Major observations Our approach to analyzing industry behavior is based on four stylized facts: Concentration: Many industries are composed of few firms. Product characteristics: Firms in some industries produce homogeneous or almost identical products, whereas firms in others distinguish themselves from the competing firms by selling differentiated brands. Costly activities: Firms in an industry are engaged in repeated costly activities targeted for the purpose of enhancing the sales of their brands. In some industries, these activities constitute the major cost of the firm and may exceed the cost of producing the product itself. These costly activities may include advertising, quality control, product differentiation costs, marketing and dealership costs. Research and development: Firms allocate resources for inventing cost reducing production technologies as well as new products. These resource allocations also include large investments in imitations of technologies invented by rival firms (reverse engineering).
It is often thought that these four observations are interrelated. Most of the earlier empirical studies in industrial organization focused on running regressions of variables such as profit margins, firms' size, advertising expenditure, and research and development (R&D) expenditure on concentration (see Goldschmid, Mann, and Weston 1974 for a summary of these works). The purpose of this book is to provide a theoretical linkage of the factors that affect concentration, and how concentration affects the strategic behavior of firms. The reason why we think of concentration as a major issue of industrial organization theory follows from the failure of the competitive market structure to explain why industries are composed of a few large firms instead of many small firms. Thus, the theory of competitive market structure, although easy to solve for if an equilibrium exists, in most cases cannot explain the composition and behavior of firms in the industry. Given the noncompetitive behavior of firms, markets are also influenced by buyers' reactions to firms' attempts to maximize profits. In this respect, our analysis here will have to fully characterize how consumers determine which brands to buy, how much to buy, and how to search and select the lowest priced brand that fits their specific preferences. For this reason, the approach we take is mostly a strategic one, meaning that both firms and consumers learn the market structure and choose an action that maximizes profit (for the firms) and utility (for the consumers). In addition, given the complexity of decisions made by strategic (noncompetitive) firms, the issue of the internal organization of firms becomes an important factor affecting their behavior. Thus, we briefly address the issue of how management structure under conditions of imperfect information affects the performance of the firm in the market. Finally, we extensively analyze the role of the regulator. First, from a theoretical point of view we ask whether intervention can increase social welfare under various market structures and firms' activities. Second, we describe and analyze the legal system affecting our industries. 1.1.2 Schools of thought and methodology The standard approach to the study of industrial organization, as laid out by Joe Bain, decomposes a market into structure, conduct, and performance of the market. Structure means how sellers interact with other sellers, with buyers, and with potential entrants. Market structure also defines the Product in terms of the potential number of variants in which the product can be produced. Market conduct refers to the behavior of the firms in a given market structure, that is, how firms determine their price policy, sales, and promotion. Finally, performance refers to the
welfare aspect of the market interaction. That is, to determine performance we measure whether the interaction in the market leads to a desired outcome, or whether a failure occurs that requires the intervention of the regulator. Many aspects of performance are discussed in this book. First, is the technology efficient in the sense of whether it is operated on an optimal (cost-minimizing) scale? Second, does the industry produce a socially optimal number of brands corresponding to consumers' preferences and the heterogeneity of the consumers? Third, are the firms dynamically efficient—do they invest a proper amount of resources in developing new technologies for current and future generations? All these efficiency requirements are generally summarized by a particular social welfare function that can combine the trade-off among the different efficiency criteria. For example, the welfare of consumers who have preferences for variety increases with the number of brands produced in an industry. However, if each brand is produced by a different factory where each factory is constructed with a high fixed-cost investment, then it is clear that from a technical point of view, the number of brands produced in an industry should be restricted. Hence, there will always be a tradeoff between technical efficiency and consumer welfare that will require defining a welfare function to determine the optimal balance between consumer welfare and efficient production patterns. In 1939, Edward Mason published a very influential article emphasizing the importance of understanding the market-specific causes of non-competitive behavior. In that article, Mason discussed the methodology for studying the various markets: It goes without saying that a realistic treatment of these questions necessitates the use of analytical tools which are amenable to empirical application. The problem, as I see it, is to reduce the voluminous data concerning industrial organization to some sort of order through a classification of market structures. Differences in market structure are ultimately explicable in terms of technological factors. The economic problem, however, is to explain, through an examination of the structure of markets and the organization of firms, differences in competitive practices including price, production, and investment policies.
Thus, Mason argued that to be able to understand different degrees of competition in different markets, the researcher would have to analyze the different markets using different assumed market structures. The reader will appreciate this methodology after reading this book, where we try to fit an appropriate market structure to the studied specific
market, where the variety of market structures are defined and developed in part II. In his article, Mason emphasized the importance of understanding sources of market power (''market control'' in his language) in order to understand how prices are determined in these markets ("price policy" in his language): A firm may have a price policy by reason of the existence of rivals of whose action it must take account, of the desirability of considering the effect of present upon future price, of the possibility of competing in other ways than by price, and for many other reasons.
Mason continues and hints at how the degree of industry concentration is correlated with noncompetitive behavior: The size of a firm influences its competitive policies in a number of ways. The scale of its purchases and sales relative to the total volume of transactions. the absolute size of a firm, as measured by assets, employees, or volume of sales. [are] also relevant to price and production policies. Selling practices at the disposal of the large firm may be beyond the reach of its smaller competitors. The size of a firm likewise influences its reaction to given market situations.
Analysts of industrial organization after Mason continued mostly to use a descriptive language, but later ones used price theory (sometimes referred to as the Chicago School). The Chicago price-theory approach conceded that monopoly is possible but contended that its presence is much more often alleged than confirmed. When alleged monopolies are genuine, they are usually transitory, with freedom of entry working to eliminate their influence on price and quantities within a fairly short time period (see Reder 1982). Thus, the so-called Chicago School was not very supportive of the persistentmarket-power approach that constituted Bain's major theory of entry barriers. The fast development of game theory in the 1970s gave a push to the strategic approach to industrial organization and later to strategic international trade analysis. Unlike the competitive-markets approach, the strategic approach models the firms on the assumption that they and other firms can affect the market outcome consisting of prices, quantities, and the number of brands. In addition, game theory provided the tools for analyzing dynamic scenarios such as how established firms react to a threat of entry by potential competitors. Our approach does not attempt to represent any particular school of thought. In fact, the main purpose of this book is to demonstrate
that there is no general methodology for solving problems, hence each observation may have to be worked out in a different model. Thus, each time we address a new observation, we generally, construct a special ad hoc model, where the term "ad hoc" should not be given a negative connotation. To the contrary, the ad hoc modeling methodology frees the researcher from constraining the theory to temporary "fashions" which are given a priority in the scientific literature and allows the scientist to concentrate on the merit of the model itself, where merit means how well the theory or the model explains the specific observation that the scientist seeks to explain. Nevertheless, the reader will discover that the strategic game-theoretic approach is the dominant one in this book. 1.2 Law and Economics The legal structure governing the monitoring of the industry is called antitrust law. The word "trust" reflects the spirit of the laws aiming at any form of organization, trust, communication, and contract among firms that would impede competition. In this book we confine the discussion of the legal aspects of the industry mainly to U.S. law. I chose to deal with U.S. law since it is perhaps the most advanced in terms of achieving competition and the restraints of monopoly power. Although not the oldest, the U.S. antitrust system seems to be the most experienced one in terms of famous court cases that put the legal system into effect. For example, the Restrictive Trade Practices Act, which is the British equivalent of the 1890 Sherman Act regarding cartel prohibition, was enacted a very long time after the Sherman Act, in 1956 to be precise. In other words, the U.S. was and remains a leader in antitrust legislation. It is interesting to note that in the United States real prices of products tend to be the lowest in the world. However, the United States also has the most restrictive antitrust regulation structure in the world. Hence, although it is commonly argued that market intervention in the form of regulation results in higher consumer prices, here we observe that antitrust regulation is probably the cause for low consumer prices in the United States. For this reason, the study of the U.S. antitrust systems is an integral part of the study of industrial organization, especially for those students from countries with less competitive markets. Several chapters in this book conclude with appendixes discussing the legal matters related to the topics analyzed in the theoretical part of the chapter. In these appendixes, references are always made to the law itself and to its historical origin. Court cases are not discussed in this book, since they are analyzed in a large number of law-and-economics textbooks, for example Asch 1983, Gellhorn 1986, and Posner 1977.
1.2.1 The development of the antitrust legal system It is not surprising that when the Sherman Antitrust Act was passed in 1890, economists were almost unanimously opposed to it, on the basis that "trust busting" would involve a loss of the efficiency advantages of combinations or trusts (West 1987). Interestingly, after a decade of strict enforcement of the older merger's guidelines issued by the Federal Trade Commission, the newer 1984 guidelines have brought back the efficiency argument as an argument for merger in medium concentrated industries. The reader interested in learning the development of the antitrust laws should not miss reading Bork 1978. According to Bork, the major development (and the entire set of disputes and theoretical conjectures) were all formed during the period from 1890 (Sherman Act) to 1914 (Clayton Act and the Federal Trade Commission Act). The Sherman Act of 1890 was intended to strike at cartels, horizontal mergers of monopolistic nature, and predatory business activities. Section 1 of this act stated that "Every contract, combination in the form of trust or otherwise. in restraint of trade or commerce. is hereby declared to be illegal." Earlier court interpretations followed section 1 of the act precisely as stated but soon began to adhere to the "rule of reason," in which not every act of merger was considered as a restraint of trade. The courts began identifying which restraints were reasonable and which were not. In 1911 a major ruling based on the Sherman Act was handed down, wherein some of Standard Oil's activities were found to be illegal, leading to the dissolution of this giant into thirty companies. In that period, American Tobacco also broke up. A large-scale dissolution occurred again in 1982, when AT&T responded to pressure to break up into the seven "baby'' Bell companies and AT&T. The AT&T breakup was effected by consent decree and not by litigation. The search for which restraints of trade are reasonable led to a more refined legislation, the Clayton Act of 1914, in which price discrimination, exclusive dealing, and corporate stock acquisition that may lead to reduced competition were declared illegal. The Federal Trade Commission Act of 1914 mandated the FTC to categorize and identify what constitute unfair methods of competition. 1.2.2 The "Per Se" versus the "Rule of Reason" approaches In all the law-and-economies appendixes, we make a use of two methods of court ruling in antitrust cases: the per se rule, and the rule of reason. Bork (1978) defines the rule of reason as a set of general categories that are given content by ideas about the proper goals of the law, economics, and the requirement of the judicial process. In other words, court rulings consist of two major categories: (a) business behavior that
is illegal per se, and (b) business behavior that is judged by standards of the party's intent or the effect the behavior is likely to have. For our purposes, we will refer to the rule of reason as category (b). Bork (1978) regards the per se rule as containing a degree of arbitrariness. The per se rule implies that the judgment is handed down on the basis of the inherent effect of the act committed by the accused party. That is, to have a particular behavior declared illegal per se, the plaintiff needs only to prove that it occurred. The per se rule is justified in cases where the gains associated from the imposition of the rule will far outweigh the losses since significant administrative costs can be saved. That is, the advantage of the per se rule is that the particular case need not be identified, since the act itself is assumed to be illegal. 1.3 Industrial Organization and International Trade In this book the reader will find a wide variety of international issues, for the simple reason that international markets should not be very different from national markets. Thus, one might expect that concentration would characterize international markets as well as national markets. As a result of this (rather late) recognition that international trade can be characterized by oligopolistic market structures, a tremendous amount of literature emerged during the 1980s (see Krugman 1989). Once this newer trade theory picked up, a broad new array of issues had to be analyzed. The first was, how can international trade in differentiated products be explained by a monopolistic competition market structure? Then, what are the implications of oligopolistic international market structures for the gains from the imposition of trade barriers? Whereas earlier writers got excited by learning that countries have a lot to gain when imposing trade restrictions or allowing subsidization of industries competing in internationally oligopolistic markets, later writers have managed to calm down this new wave of protectionism by demonstrating that any trade policy recommended under a particular market structure may not be recommended under a different market structure. Thus, since it is hard to estimate what the ongoing market structure is and the form of competition of a particular market, it may be better that governments refrain from intervention at all. These later papers have somewhat mitigated the strong policy actions recommended by the early strategic trade literature. 1.4 References Asch, P. 1983. Industrial Organization and Antitrust Policy. New York: John Wiley & Sons.
Bain, J. 1968. Industrial Organization. 2nd ed. New York: John Wiley & Sons. Bork, R. 1978. The Antitrust Paradox. New York: Basic Books. Gellhorn, E. 1986. Antitrust Law and Economics in a Nutshell. St. Paul, Minn.: West Publishing. Goldschmid, H., H. Mann, and J. Weston. 1974. Industrial Concentration: The New Learning. Boston: Little, Brown. Krugman, P. 1989. "Industrial Organization and International Trade." In Handbook of Industrial Organization, edited by R. Schmalensee and R. Willig. Amsterdam: North-Holland. Mason, E. 1939. "Price and Production Policies of Large-Scale Enterprise." American Economic Review 29, pt. 2: 61-74 Posner, R. 1977. Economic Analysis of Law. Boston: Little, Brown. Reder, M. 1982. "Chicago Economics: Performance and Change." Journal of Economic Literature 20: 1-38. West, E. 1987. "Monopoly." In The New Palgrave Dictionary of Economics, edited by J. Eatwell, M. Milgate, and P. Newman. New York: The Stockton Press.
PART I THEORETICAL BACKGROUND: GAME THEORY AND MICROECONOMICS
Chapter 2 Basic Concepts in Noncooperative Game Theory If you know the enemy and know yourself, you need not fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every battle. All men can see these tactics whereby I conquer, but what none can see is the strategy out of which victory is evolved. —Sun Tzu, The Art of War (490 B.C.)
Game theory (sometimes referred to as "Interactive Decision Theory") is a collection of tools for predicting outcomes for a group of interacting agents, where an action of a single agent directly affects the payoffs (welfare or profits) of other participating agents. The term game theory stems from the resemblance these tools to sports games (e.g., football, soccer, ping-pong, and tennis), as well as to "social" games (e.g., chess, cards, checkers, and Diplomacy). Game theory is especially useful when the number of interactive agents is small, in which case the action of each agent may have a significant effect on the payoff of other players. For this reason, the bag of tools and the reasoning supplied by game theory have been applied to a wide variety of fields, including economics, political science, animal behavior, military studies, psychology, and many more. The goal of a game-theoretic model is to predict the outcomes (a list of actions
adopted by each participant), given the assumed incentives of the participating agents. Thus, game theory is extremely helpful in analyzing industries consisting of a small number of competing firms, since any action of each firm, whether price choice, quantity produced, research and development, or marketing techniques, has strong effects on the profit levels of the competing firms. As the title of this chapter suggests, our analyses focus only on non-cooperative games. We generally distinguish between two types of game representations: normal form games (analyzed in section 2.1), and extensive form games (analyzed in section 2.2). Roughly speaking, we can say that in normal form games all players choose all their actions simultaneously, whereas in extensive form games agents may choose their actions in different time periods. In addition, we distinguish between two types of actions that players can take: a pure action, where a player plays a single action from the player's set of available actions, and a mixed action, where a player assigns a probability for playing each action (say by flipping a coin). Our entire analysis in this book is confined to pure actions. However, for the sake of completeness, mixed actions are analyzed in an appendix (section 2.4). Finally, information plays a key role in game theory (as well as in real life). The most important thing that we assume is that the players that we model are at least as intelligent as economists are. That is, the players that we model have the same knowledge about the structure, the rules, and the payoffs of the game as the economist that models the game does. Also important, our analysis in this chapter is confined to games with perfect information. Roughly, this means that in perfect information games, each player has all the information concerning the actions taken by other players earlier in the game that affect the player's decision about which action to choose at a particular time. Games under imperfect information are not used in this book; however, we introduce them in an appendix (section 2.5) for the sake of completeness. 2.1 Normal Form Games Our first encounter with games will be with normal form games. In normal form games all the players are assumed to make their moves at the same time. 2.1.1 What is a game? The following definition provides three elements that constitute what we call a game. Each time we model an economic environment in a game-theoretic framework, we should make sure that the following three
elements are clearly stipulated: Definition 2.1 A normal form game is described by the following: 1. A set of N players whose names are listed in the set
2. Each player i, , has an action set Ai which is the set of all actions available to player i. Let a denote a particular action taken by player i. Thus, player i's action set is a list of all actions available to player i and hence, , where ki is the number of actions available to player i. Let be a list of the actions chosen by each player. We call this list of actions chosen by each player i an outcome of the game. 3. Each player i has a payoff function, πi, which assigns a real number, πi(a), to every outcome of the game. Formally, each payoff function πi maps an N-dimensional vector, a = (a1. ,aN) (the action of chosen by each player), and assigns it a real number, πi(a). A few important remarks on the definition of a game follow: 1. It is very important to distinguish between an action set Ai, which is the set of all actions available to a particular player i, and an outcome a, which is a list of the particular actions chosen by all the players. 2. Part 2 of Definition 2.1 assumes that the each player has a finite number of actions, that is, that player i has ki actions in the action set Ai. However, infinite action sets are commonly used in industrial organization. For example, often, we will assume that firms choose prices from the set of nonnegative real numbers. 3. We use the notation to denote a set where a set (e.g., an action set) contains elements in which the order of listing is of no consequence. In contrast, we use the notation (list) to denote a vector where the order does matter. For example, an outcome is a list of actions where the first action on the list is the action chosen by player 1, the second by player 2, and so on. 4. The literature uses the term action profile to describe the list of actions chosen by all players, which is what we call an outcome. For our purposes there is no harm in using the term outcome (instead of the term action profile) for describing this list of actions. However,
if games involve some uncertainty to some players, these two terms should be distinguished since under uncertainty an action profile may lead to several outcomes (see for example mixed actions games described in the appendix [Section 2.4]). 5. In the literature one often uses the term stoutly instead of the term action (and therefore strategy set instead of action set), since in a normal form game, there is no distinction between the two terms. However, when we proceed to analyze extensive form games (section 2.2), the term strategy is given a different meaning than the term action. The best way to test whether Definition 2.1 is clear to the reader is to apply it to a simple example. A simple way to describe the data that define a particular game is to display them in a matrix form. Consider the following game described in Table 2.1. We now argue that Table 2.1 Country 2 WAR Country 1
Table 2.1: Peace-War game
contains all the data needed for properly defining a game according to Definition 2.1. First, we have two players, N = 2, called country 1 and 2. Second, the two players happen to have the same action sets: A1 = A2 =. There are exactly four outcomes for this game: (WAR, WAR), (WAR, PEACE), (PEACE, WAR), (PEACE, PEACE). Third, the entries of the matrix (i.e., the four squares) contain the payoffs to player 1 (on the left-hand side) and to player 2 (on the right-hand side), corresponding to the relevant outcome of the game. For example, the outcome a = (WAR, PEACE) specifies that player 1 opens a war while player 2 plays peace. The payoff to player 1 from this outcome is π1(a) = π1(WAR, PEACE) = 3. Similarly, the payoff to player 2 is π2(a) = π2(WAR, PEACE) = 0 since country 2 does not defend itself. The story behind this game is as follows. If both countries engage in a war, then each country gains a utility of 1. If both countries play PEACE, then each country gains a utility of 2. If one country plays WAR while the other plays PEACE, then the aggressive country reaches the highest possible utility, since it "wins" a war against the nonviolent country with no effort. Under this outcome the utility of the "pacifist country" should be the lowest (equal to zero in our example).
In the literature, the game described in Table 2.1 is commonly referred to as the Prisoners' Dilemma game. Instead of having two countries fighting a war, consider two prisoners suspected of having committed a crime, for which the police lack sufficient evidence to convict either suspect. The two prisoners are put in two different isolated cells and are offered a lower punishment (or a higher payoff) if they confess of having jointly committed this crime. If we replace WAR with CONFESS, and PEACE with NOT CONFESS, we obtain the so-called Prisoners' Dilemma game. In the present analysis we refrain from raising the question whether the game described in Table 2.1 is observed in reality or not, or whether the game is a good description of the world. Instead, we ask a different set of questions, namely, given that countries in the world behave like those described in Table 2.1, can we (the economists or political scientists) predict whether the world will end up in countries declaring war or declaring peace. In order to perform this task, we need to define equilibrium concepts. 2.1.2 Equilibrium concepts Once the game is properly defined, we can realize that games may have many outcomes. Therefore, by simply postulating all the possible outcomes (four outcomes in the game described in Table 2.1), we cannot make any prediction of how the game is going to end. For example, can you predict how a game like the one described in Table 2.1 would end up? Will there be a war, or will peace prevail? Note that formulating a game without having the ability to predict implies that the game is of little value to the researcher. In order to make predictions, we need to develop methods and define algorithms for narrowing down the set of all outcomes to a smaller set that we call equilibrium outcomes. We also must specify properties that we find desirable for an equilibrium to fulfill. Ideally, we would like to find a method that would select only one outcome. If this happens, we say that the equilibrium is unique. However, as we show below, the equilibrium concepts developed here often fail to be unique. Moreover, the opposite extreme may occur where a particular equilibrium may not exist at all. A game that cannot be solved for equilibria is of less interest to us since no real-life prediction can be made. Before we proceed to defining our first equilibrium concept, we need to define one additional piece of notation. Recall that an outcome of the game a = (a1. ,ai. aN) is a list of what the N players are doing (playing). Now, pick a certain player, whom we will call player i, (e.g., i can be player 1 or 89 or N, or any player). Remove from the outcome
a the action played by player i himself. Then, we are left with the list of what all players are playing except player i, which we denote by . Formally,
Note that after this minor surgical operation is performed, we can still express an outcome as a union of what action player i plays and all the other players' actions. That is, an outcome a can be expressed as . Equilibrium in dominant actions Our first equilibrium concept, called equilibrium in dominant strategies, is a highly desirable equilibrium, in the sense that if it exists, it describes the most intuitively plausible prediction of what players would actually do. The following definition applies for a single player in the sense that it classifies actions in a player's action set according to a certain criterion. Definition 2.2 A particular action is said to be a dominant action for player i if no matter what all other players are playing, playing always maximizes player i's payoff. Formally, for every choice of actions by all players except i, ,
For example, Claim 2.1 In the game described in Table 2.1, the action a1 = WAR is a dominant action for player 1. Proof. It has to be shown that no matter what player 2 does, player 1 is always better off by starting a war. Thus, we have to scan over all the possible actions that can be played by player 2. If player 2 plays a2 = WAR, then
Also, if player 2 plays a2 = PEACE, then
Similarly, since the game is symmetric (meaning that renaming player 1 as player 2 and vice versa, does not change players' payoffs), the reader can establish that a2 = WAR is a dominant action for player 2. We now turn to defining our first equilibrium concept. An equilibrium in dominant actions is simply an outcome where each player plays a dominant action. Formally, Definition 2.3 An outcome ( dominant actions if
) (where for every i = 1, 2. N) is said to be an equilibrium in is a dominant action for each player i.
Clearly, since WAR is a dominant action for each player in the game described in Table 2.1, the outcome (a1, a2 ) = (WAR, WAR) is an equilibrium in dominant actions. Although an equilibrium in dominant actions constitutes a very reasonable prediction of how players may interact in the real world, unfortunately, this equilibrium does not exist for most games of interest to us. To demonstrate this point, let us analyze the following Battle of the Sexes game described in Table 2.2. The intuition behind this (rather Rachel FOOTBALL φ
Table 2.2: Battle of the Sexes
romantic) Battle of the Sexes game is that it is relatively important for Jacob and Rachel to be together. That is, assuming that the payoffs to the players in Table 2.2 represent utilities to each player under each outcome, each player gains the lowest possible utility when the player goes alone to one of these entertainment events. Both of them gain a higher utility if they go together to one of these events. However, comparing the two outcomes where the players are ''together,'' we can observe that Jacob prefers the OPERA, whereas Rachel prefers FOOTBALL. Thus, the Battle of the Sexes is sometimes referred to as a coordination game. The Battle of the Sexes game exhibited in Table 2.2 describes some real-life situations. For example, in chapter 10 we analyze economies in which products operate on different standards (such as different TV systems). The Battle of the Sexes game happens to be an ideal theoretical framework to model two firms with two available actions: choose standard 1, or standard 2. Failure to have both firms choosing the same standard may result in having consumers reject the product, thereby leaving the two firms with zero profits.
After formulating the Battle of the Sexes game, we now seek to find some predictions for this game. However, the reader will probably be disappointed to find out that: Claim 2.2 There does not exist an equilibrium in dominant actions for the Battle of the Sexes game. Proof. It is sufficient to show that one of the players does not have a dominant action. In this case, there cannot be an equilibrium in dominant actions since one player will not have a dominant action to play. Therefore, it is sufficient to look at Jacob: If Rachel chooses aR = ω, then Jacob would choose ω because
However, when Rachel goes to a football game, aR = φ, then Jacob would choose φ because
So, we have shown that one player does not have a dominant action, and this suffices to conclude that Definition 2.3 cannot be applied; hence, there does not exist an equilibrium in dominant actions for the Battle of the Sexes game. Nash equilibrium (NE) So far we have failed to develop an equilibrium concept that would select an outcome that would be a "reasonable" prediction for this model. In 1951, John Nash provided an existence proof for an equilibrium concept (earlier used by Cournot when studying duopoly) that has become the most commonly used equilibrium concept in analyzing games. Definition 2.4 An outcome (where for every i = 1, 2. N) is said to be a Nash equilibrium (NE) if no player would find it beneficial to deviate provided that all other players do not deviate from their strategies played at the Nash outcome. Formally, for every player i, i = 1, 2. N,
The general methodology for searching which outcomes constitute a NE is to check whether players benefit from a unilateral deviation from a certain outcome. That is, to rule out an outcome as a NE we need only
demonstrate that one of the players can increase the payoff by deviating to a different action than the one played in this specific outcome, assuming that all other players do not deviate. Once we find an outcome in which no player can benefit from any deviation from the action played in that outcome, we can assert that we found a NE outcome. We continue our discussion of the NE with the investigation of the relationship between Nash equilibrium and equilibrium in dominant actions. To demonstrate the relationship between the two equilibrium concepts, we first search for the NE outcomes for the game described in Table 2.1. Recall that we have already found that (WAR, WAR) is an equilibrium in dominant actions, but can this fact help us in searching for a NE for this game? Not surprisingly, yes, it can! Since an equilibrium in dominant actions means that each player plays a dominant action, no player would find it beneficial to deviate no matter how the others play. In particular, no player would deviate if the other players stick to their dominant actions. Hence, Proposition 2.1 An equilibrium in dominant actions outcome is also a NE. However, a NE outcome need not be an equilibrium in dominant actions. Altogether, we have it that (WAR, WAR) is a NE for the game described in Table 2.1. We leave it to the reader to verify that no other outcome in this game is a NE. Therefore, this equilibrium is called unique. The second part of Proposition 2.1 follows from the Battle of the Sexes game, where there exist two NE, but there does not exist an equilibrium in dominant actions. Multiple Nash equilibria We now demonstrate that a Nash equilibrium need not be unique. For example, applying Definition 2.4 to the Battle of the Sexes game yields: Claim 2.3 The Battle of the Sexes game described in Table 2.2 has two Nash equilibrium outcomes: (OPERA, OPERA) and (FOOTBALL, FOOTBALL). Proof. To prove that ( ω, ω) is a NE, we have to show that no player would benefit from deviation, given that the other does not deviate. In this game with two players, we have to show that, given that a R = ω, player J would play aJ = ω; and that given that aJ = ω, player R would play aR = ω. These two conditions follow from
Using the same procedure, it can be easily shown that the outcome ( φ, φ ) is also a NE. Finally, we need to show that the other two outcomes, (ω, φ )and (φ , ω) are not NE. However, this follows immediately from (2.1). Nonexistence of a Nash equilibrium So far we have seen examples where there is one or more NE. That is, as in the Battle of the Sexes game displayed in Table 2.2, it is always possible to find games with multiple NE. If the equilibrium is not unique, the model has a low prediction power. In contrast, Table 2.3 demonstrates a game where a Nash equilibrium does not exist. Therefore, consider the variant of the Battle of the Sexes game after thirty years of marriage. The intuition behind the game described in Table 2.3 is that after Rachel OPERA (ω) Jacob
Table 2.3: Nonexistence of a NE (in pure actions)
thirty years of marriage, Rachel's desire for being entertained together with Jacob has faded; however, Jacob's romantic attitude remained as before, and he would always gain a higher utility from being together with Rachel rather than alone. Proposition 2.2 The game described in Table 2.3 does not have a NE. Proof. We must prove that each outcome is not a NE. That is, in each of the four outcomes, at least one of the player would find it beneficial to deviate. (1) For the ( ω, ω) outcome,
Hence, Rachel would deviate toaR = φ. (2) For the ( φ, ω) outcome,
Hence, Jacob would deviate to aJ = ω. (3) For the ( φ, φ) outcome,
Hence, Rachel would deviate to aR = ω. (4) For the ( ω, φ) outcome,
Hence, Jacob would deviate toaJ = φ . Using "best-response" functions to solve for NE We now develop a tool called "best-response" functions that facilitates the search for NE.
Definition 2.5 1. In a two-player game, the best-response function of player i is the function R i(aj), that for every given action aj of player j assigns an action a i= Ri(aj) that maximizes player i's payoff πi(ai, aj) 2. More generally, in an N-player game, the best-response function of player i is the function that for given actions of players 1, 2. i - 1, i + 1. N, assigns an action that maximizes player i's payoff .
Let us now construct the best-response functions for Jacob and Rachel described in the Battle of the Sexes game given in Table 2.2. It is straightforward to conclude that
That is, if Rachel plays ω, Jacob's "best response" is to play ω, and if Rachel plays φ , Jacob's "best response" is to play φ, and so on. Now, the importance of learning how to construct best-response functions becomes clear in the following proposition: Proposition 2.3 If
is a Nash equilibrium outcome, then
for every player i.
Proof. By Definition 2.4, in a NE outcome each player does not benefit from deviating from the strategy played in a NE outcome (given that all other players do not deviate). Hence, by Definition 2.5, each player is on her best-response function. That is, in a NE outcome, each player chooses an action that is a best response to the actions chosen by other players in a NE. Proposition 2.3 is extremely useful in solving for NE in a wide variety of games and will be used extensively. The procedure for finding a NE is now very simple: First, we calculate the best-response function of each player. Second, we check which outcomes lie on the best-response functions of all players. Those outcomes that we find to be on the best-response functions of all players constitute the NE outcomes. For example, in the Battle of the Sexes game, (2.2) implies that outcomes ( ω, ω) and ( φ, φ) each satisfy both players' best-response functions and therefore constitute NE outcomes.
2.1.3 Welfare comparisons among outcomes So far, our analysis has concentrated on defining equilibrium concepts that enable us to select equilibrium outcomes for predicting how players would end up acting when facing similar games in the real world. However, we have not discussed whether the proposed equilibria yield efficient outcomes. That is, we wish to define an efficiency concept that would enable us to compare outcomes from a welfare point of view. In particular, using the Pareto efficiency criterion, we wish to investigate whether there are outcomes that yield higher payoff levels to some players without reducing the payoffs of all other players. For example, in the Peace-War game of Table 2.1, the outcome (PEACE, PEACE) yields higher payoffs to both players compared with the outcome (WAR, WAR). In this case, we say that the outcome (PEACE, PEACE) Pareto dominates the outcome (WAR, WAR). Formally, Definition 2.6 1. The outcome â Pareto dominates the outcome a (also called Pareto superior to a) if (a) For every player i,
(b) there exists at least one player j for whom
2. An outcome a* is called Pareto efficient (also called Pareto optimal) if there does not exist any outcome which Pareto dominates the outcome a*. 3. Outcomes a and ã are called Pareto noncomparable if for some player i, other player j, .
For example, in the Peace-War game, the outcomes (WAR, PEACE) and (PEACE, WAR) are Pareto noncomparable. In the Battle of the Sexes game of Table 2.2, the outcomes (OPERA, FOOTBALL) and (FOOTBALL, OPERA) are Pareto dominated by each of the other two outcomes. The outcomes (OPERA, OPERA) and (FOOTBALL, FOOTBALL) are Pareto efficient and are also Pareto noncomparable. 2.2 Extensive Form Games Our analysis so far has concentrated on normal form games where the players are restricted to choosing an action at the same time. In this section we analyze games in which players can move at different times and more than once. Such games are called extensive form games. Extensive form games enable us to introduce timing into the model.
Before going to the formal treatment, let us consider the following example. A terrorist boards a flight from Minneapolis to New York. After thirty minutes, after reaching a cruising altitude of thirty thousand feet, the terrorist approaches the pilot and whispers to the pilot that she will explode a bomb if the pilot does not fly to Cuba. Figure 2.1 describes the Pilot-Terrorist game. One player is the pilot and the other is the
Figure 2.1: The pilot and the terrorist
terrorist. The game is represented by a tree, with a starting decision node (point I), other decision nodes (II N and IIC ), and terminal nodes (end points). Note that in some literature, the term vertex (vertices) is used in place of the term node(s). The branches connecting decision nodes, and decision nodes to terminal nodes describe actions available to the relevant player on a particular decision node. In this Pilot-Terrorist game, after hearing the terrorist's threat, the pilot gets to be the player to choose an action at the starting node. At the starting node, the pilot's action set is given by . Depending on what action is chosen by the pilot, the terrorist has her turn to move at node II C or IIN . The terrorist's action set is at the node IIC and at the node II N. In this simple game, the terrorist's action sets happen to be the same at both nodes, but this need not always be the case. We can now give a formal definition to extensive form games with perfect information. Extensive form games with imperfect information are defined in Definition 2.17 on page 38. Definition 2.7 An extensive form game is: 1. A game tree containing a starting node, other decision nodes, terminal nodes, and branches linking each decision node to successor nodes.
players, indexed by i, i = 1, 2. N.
3. For each decision node, the name of the player entitled to choose an action. 4. For each player i, a specification of i's action set at each node that player i is entitled to choose an action. 5. A specification of the payoff to each player at each terminal node. 2.2.1 Defining strategies and outcomes in extensive form games Our preliminary discussion of extensive form games emphasized that a player may be called to choose an action more than once and that each time a player chooses an action, the player has to choose an action from the action set available at that particular node. Therefore, we need to define the following term. Definition 2.8 A strategy for player i (denoted by s i) is a complete plan (list) of actions, one action for each decision node that the player is entitled to choose an action. Thus, it is important to note that a strategy is not what a player does at a single specific node but is a list of what the player does at every node where the player is entitled to choose an action. What are the strategies available to the terrorist in the Pilot-Terrorist game described in Figure 2.1? Since the terrorist may end up in either node II C or II N, a strategy for the terrorist would be a specification of the precise action she will be taking at each node. That is, although it is clear that the terrorist will reach either node IIC or II N but not both, a strategy for this player must specify what she will do at each of the two nodes. Therefore, the terrorist has four possible strategies given by (B, B), (B, NB), (NB, B), (NB, NB), where the first component refers to the terrorist's action in node IIC , and the second component refers to her action at node IIN . Since the pilot is restricted to making a move only at node I, and since his action set has two possible actions, this game has eight outcomes given by (NY, (B, B)), (NY, (B, NB)), (NY, (NB, B)), (NY, (NB, NB)), (C, (B, B)), (C, (B, NB)), (C, (NB, B)), (C, (NB, NB)). 2.2.2 A normal form representation for extensive form games Now that the game is well defined, we seek to find some predictions. The first step would be to search for a Nash equilibrium. Recalling our definition of Nash equilibrium (Definition 2.4), in extensive form games
we look for a Nash equilibrium in strategies, where each player cannot increase the payoff by unilaterally deviating from the strategy played at the NE outcome. It turns out that in many instances transforming an extensive form game into a normal form makes it easier to find the Nash equilibria. Table 2.4 provides the normal form representation for the PilotTerrorist game described in Figure 2.1. Table 2.4 shows that there are three Nash Terrorist (B, B) Pilot
Table 2.4: Normal form representation of the Pilot-Terrorist game
equilibrium outcomes for this game: (NY, (NB, NB)), (NY, (B, NB)) and (CUBA, (NB, B)). Note that here, as in the Battle of the Sexes game, multiple NE greatly reduce our ability to generate predictions from this game. For this reason, we now turn to defining an equilibrium concept that would narrow down the set of NE outcomes into a smaller set of outcomes. In the literature, an equilibrium concept that selects a smaller number of NE outcomes is called a refinement of Nash equilibrium, which is the subject of the following subsection. 2.2.3 Subgames and subgame perfect equilibrium In this subsection we define an equilibrium concept that satisfies all the requirement of NE (see Definition 2.4) and has some additional restrictions. This equilibrium concept may be helpful in selecting a smaller set of outcomes from the set of NE outcomes, by eliminating some undesirable NE outcomes. Before we proceed to the formal part, let us go back to the Pilot-Terrorist game and look at the three NE outcomes for this game. Comparing the three NE outcomes, do you consider any equilibrium outcomes to be unreasonable? What would you suggest if the pilot were to hire you as her strategic adviser? Well, you would probably tell the pilot to fly to New York. Why? By looking at the terrorist's payoffs at the terminal nodes in Figure 2.1 we can see that if the pilot flies to NEW YORK, the terrorist will NOT BOMB (a payoff of πt = 0 compared with πt = -1 if she does), and the pilot will gain a payoff of πp = 2 compared with a payoff of πp = 1 for flying to Cuba. In other words, after the pilot flies to any destination (New York, or Cuba) the terrorist's payoff is maximized by choosing the NOT BOMB action. From
this we conclude that the limitation of the NE concept is that it cannot capture the pilot's ability to predict that the terrorist will not have the incentive to explode the bomb once the plane arrives in New York (in to Cuba). More precisely, under the NE outcomes (CUBA, (NB, B)) and (NY, (B, NB)) the terrorist seems to be pulling what game theorists call an incredible threat, since the terrorist's payoffs at the terminal nodes. indicate that once reaching either node IIC or II N , the terrorist will not explode the bomb. We now want to formalize an equilibrium concept that would exclude the unreasonable Nash equilibria. In particular, we look for an equilibrium concept that would exclude outcomes where the terrorist commits herself to the BOMB action, since such an action is incredible. Moreover, we seek to define an equilibrium concept where the player who moves first (the pilot in our case) would calculate and take into account how subsequent players (the terrorist in the present case) would respond to the moves of the players who move earlier in the game. Hence, having computed how subsequent players would respond, the first player can optimize by narrowing down the set of actions yielding higher payoffs. In the Pilot-Terrorist example, we wish to find an equilibrium concept that would generate a unique outcome where the pilot flies to New York. We first define a subgame of the game. Definition 2.9 A subgame is a decision node from the original game along with the decision nodes and terminal nodes directly following this node. A subgame is called a proper subgame if it differs from the original game. Clearly, the Pilot-Terrorist game has three subgames: One is the game itself whereas the other two are proper subgames with nodes IIC and II N as starting nodes. The two proper subgames are illustrated in Figure 2.2.
Figure 2.2: Two proper subgames
In 1965, Rheinhard Selten proposed a refinement of the NE concept defined as follows:
Definition 2.10 An outcome is said to be a subgame perfect equilibrium (SPE) if it induces a Nash equilibrium in every subgame of the original game. Definition 2.10 states that a SPE outcome is a list of strategies, one for each player, consisting of players' actions that constitutes a NE at every subgame. In particular, a SPE outcome must be a NE for the original game since the original game is a subgame of itself. Note that in each subgame, the action NB is a NE. We now seek to apply Definition 2.10 in order to solve for a SPE of the Pilot-Terrorist game. Claim 2.4 The outcome (NY, (NB, NB)) constitutes a unique SPE for the Pilot-Terrorist game. Proof. Since a SPE is also a NE for the original game, it is sufficient to look at the three NE outcomes of the original game given by (NY, (B, NB)), (Cuba, (NB, B)) and (NY, (NB, NB)). Next, each proper subgame has only one NE, namely, the terrorist chooses NB. Hence, given that a SPE outcome must be a NE for every subgame, we conclude that the outcomes (NY, (B, NB)), (Cuba, (NB, B)) are not SPE. Finally, the outcome (NY, (NB, NB)) is a SPE since it is a NE for the original game, and the outcome (action) NB is a unique NE for every proper subgame. Thus, we have shown that using the SPE, refines the NE in the sense of excluding some outcomes which we may consider unreasonable. We conclude this discussion of the SPE, by describing the methodologies commonly used for finding SPE, outcomes. The general methodology for finding the SPE outcomes is to use backward induction, meaning that we start searching for NE in the subgames leading to the terminal nodes. Then, we look for NE for the subgames leading the subgames leading to the terminal nodes, taking as given the NE actions to be played in the last subgames before the terminal nodes. Then, continuing to solve backwards, we reach the starting node and look for the action that maximizes player 1's payoff, given the NE of all the proper subgames. Note that the backward induction methodology is particularly useful when the game tree is long. Finally, another common methodology is to first find the NE outcomes for the game, say by transforming the extensive form representation into a normal form representation (see subsection 2.2.2). Then, once we have the set of all NE outcomes, we are left to select those outcomes that are also NE for all subgames. This can be done by trial and error, or, as we do in the proof of Claim 2.4, by ruling out the NE outcomes of the original game that are not NE for some proper subgames.
2.3 Repeated Games Repeated games are used only once in this book, in section 6.5, where we analyze collusion among firms under imperfect competition. A repeated game is a one-shot game that is identically repeated more than once. The importance of analyzing repeated games is that under certain circumstances cooperative outcomes, which are not equilibrium outcomes under a one-shot game, can emerge as equilibrium outcomes in a repeated, noncooperative game. A repeated game is a special ''kind'' of an extensive form game in which each period, all players move simultaneously and each player's action set does not vary with time; in a more general extensive form game, actions sets may differ from one time period to another. More precisely, a repeated game is a one-shot game (see Definition 2.1) that is repeated for several periods, where the repeated game is played once in each period. Each period, after the game is played, the players move to the next period. In a subsequent period, the players observe the actions chosen by all players (including their own) in all previous periods, and only then simultaneously choose their actions for the new game. Thus, the important thing to remember is that players can perfectly monitor all the actions chosen in earlier periods prior to choosing an action in a subsequent period. The data collected by perfectly monitoring the actions played in each period is called a history at a period. To define the players' strategies under a repeated game, we now wish to modify Definition 2.8 to repeated games: Definition 2.11 1. A period τ history of a game, Hr, is the list of outcomes played in all periods t = 1,2. τ - 1. 2. A strategy of a player in a game repeated T times, is a list of actions that the player takes in each period t, t = 1, 2. T; where each period t action, is based on the period t history of the game (i.e.,
maps a history Ht to an action in the set Ai).
Hence, a strategy of a player in a repeated game is a list of actions to be played in each period τ, where each period τ action of player i is based on the observed list of actions played by all players in all periods t = 1, 2. τ - 1 summarized by the history Hτ. Therefore, an outcome of a repeated game would be a list of actions each player is taking in every period, whereas the period τ payoff to each player is a function of the actions played by the players in period τ. Consider our Peace-War game described in Table 2.1, and suppose that this game is repeated T times, in periods 1, 2. T, where T is
an integer number satisfying We denote by 0 0. In this case, we can assume that the economy's real interest r would adjust so that r =1/ρ - 1, or ρ = 1/(1 + r). We now make the following assumption regarding the players' payoffs in a repeated game: Assumption 2.1 Let denote the action taken by player i in period t, i = 1, 2, t = 1, 2. T. Also, let be the period t payoff to player i, i = 1, 2, where is given in Table 2.1. Then, the payoff to player i when the game is repeated T times is defined by
If the number of players is greater than two, then replace
We distinguish between two types of repeated games: a finitely repeated game infinitely repeated game .
2.3.1 Finitely repeated game Suppose that the Peace-War game is repeated T times, in periods 1, 2. T, where T is a finite integer number satisfying In Section 2.1 we have shown that (WAR, WAR) is a unique NE for this one-shot game. Now suppose that the game is played twice in two consecutive periods (T = 2). If we apply Definition 2.11, what strategies are available to, say, country 1? More precisely, how many strategies are there in country 1's strategy set? Claim 2.5 There are 32 = 25 available strategies to country I in this two-action, two-period repeated game. Proof. Let us first look at the second period. In the second period there could be four possible histories resulting from the four possible first-period lists of players' actions. That is, period 2 history satisfies
In the second period, there are two possible actions country 1 can take: WAR and PEACE. Now, in order to fully specify a strategy, country 1 has to specify which action will be taken for every possible history. Hence; the number of second-period actions is 2 4. On top of this, there are two possible actions available to country 1 in period 1. Hence, the number of strategies available to country 1 in a twoaction, two-period repeated game is 2 × 24 = 25. Similarly, if the game is repeated three times (T = 3), the strategy set of country 1 contains
strategies, since in the third period there are 16 = 4 x 4 possible histories (resulting from four possible lists of players' actions in each period). We now state our main proposition for finitely repeated games: Proposition 2.4 For any finite integer T, , the T-times repeated Peace-War game has a unique SPE where each country plays WAR in each period. Thus, Proposition 2.4 states that no matter how many times the Peace-War game is repeated (it could be one, or it could be a billion times), the unique SPE is WAR played by all players in every period. Proof. Using backward induction, let us suppose that the countries have already played in T-1 periods, and that now they are ready to play the final T's period game. Then, since period T is the last period that the game is played, the T's period game is identical to the single one-shot Peace-War game. Hence, a unique NE for the T's period game is WAR played by each country. Now, consider the game played in period T - 1. Both players know that after this game is completed, they will have one last game to play in which they both will not cooperate and play WAR. Hence, in T 1 each player would play the dominant strategy WAR. Working backwards, in each of the proceeding periods T-2, T-3 until period 1, we can establish that WAR will be played by every player in each period. 2.3.2 Infinitely repeated game Now, suppose that the game is repeated infinitely many times (i.e., ). The difference between the infinitely repeated game and the small or large but finitely repeated game is that in an infinitely repeated game, backward induction (used in the proof of Proposition 2.4) cannot be used to arrive at equilibrium outcomes, since there is no final period to "start" the backward induction process.
The trigger strategy We restrict the discussion of strategy in infinitely repeated games to one type, called trigger strategies. In the class of trigger strategies, each player cooperates in period t (playing ) as long as all τ players cooperated in period - 1. However, if any player did not cooperate and played WAR in period τ - 1, then player i "pulls the trigger" and plays the noncooperative action forever! That is, for every t = τ, τ + 1, τ + 2, . Formally, Definition 2.12 Player i is said to be playing a trigger strategy if for every period τ, τ = 1, 2.
That is, country i cooperates by playing PEACE as long as no country (including itself) deviates from the cooperative outcome. However, in the event that a country deviates even once, country i punishes the deviator by engaging in a WAR forever. Equilibrium in trigger strategies We now seek to investigate under what conditions the outcome where both countries play their trigger strategies constitutes a SPE. Proposition 2.5 If the discount factor is sufficiently large, then the Outcome where the players play their trigger strategies is a SPE. Formally, trigger strategies constitute a SPE if ρ > 1/2. Proof. Let us look at a representative period, call it period τ, and suppose that country 2 has not deviated in periods 1. τ. Then, if country 1 deviates and plays , Table 2.1 shows that However, given that country 1 deviates, country 2 would deviate in all subsequent periods and play for every , since country 2 plays a trigger strategy. Hence, from period τ + 1 and on, country 1 earns a payoff of 1 each period. Therefore, the period τ + 1 sum of discounted payoffs to country 1 for all periods Note that we used the familiar formula for calculating the present value of an infinite stream of payoffs given by Hence, if country 1 deviates in period τ, its sum of discounted payoffs is the sum period τ's payoff from playing WAR (while country 2 plays PEACE) equal to , plus the discounted infinite sum of payoffs when both countries play WAR (sum of discounted payoffs of 1 each period). Thus, if country 1 deviates from PEACE in period τ then
However, if country 1 does not deviate, then both countries play PEACE indefinitely, since country 2 plays a trigger strategy. Hence, both countries gain a payoff of 2 each period. Thus,
Comparing (2.3) with (2.4) yields the conclusion that deviation is not beneficial for country 1 if ρ > 1/2. Since no unilateral deviation is beneficial to any country at any subgame starting at an arbitrary period τ, we conclude that no unilateral is beneficial to a country at any period t. So far, we have showed that when both countries play the trigger strategy no country has the incentive to unilaterally deviate from playing PEACE. In the language of game theorists, we showed that deviation from the equilibrium path is not beneficial to any country. However, to prove that the trigger strategies constitute a SPE we need to show that if one country deviates and plays WAR, the other country would adhere to its trigger strategy and would play WAR forever. In the language of game theorists, to prove SPE we need to prove that no player has the incentive to deviate from the played strategy even if the game proceeds off the equilibrium path. To prove that, note that if country 1 deviates from PEACE in period τ, then Definition 2.12 implies that country 1 will play WAR forever since Definition 2.12 states that any deviation (by country 1 or country 2) would trigger country 1 to play WAR forever. Hence, country 2 would punish country 1 by playing WAR forever since WAR yields a payoff to country 2 of 1 each period (compared with payoff of 0 if country 2 continues playing PEACE). Altogether, the trigger strategies defined in Definition 2.12 constitute a SPE for the infinitely repeated Peace-War game. Proposition 2.5 demonstrates the relationship between the players' time discount factor, given by ρ, and their incentive to deviate from the cooperative action. That is, when players have a low discount factor (say, ρ is close to zero), the players do not care much about future payoffs. Hence, cooperation cannot be a SPE since the players wish to maximize only their first period profit. However, when ρ is large ( ρ > 1/2 in our case) players do not heavily discount future payoffs, so cooperation becomes more beneficial to the players since the punishment on deviation becomes significant because the discounted flow of payoffs under cooperation (2 per period) is higher than the short-run gain from
deviation (a payoff of 3 for one period and 1 thereafter). This discussion leads to the following corollary: Corollary 2.1 In an infinitely repeated game cooperation is easier to sustain when players have a higher time discount factor. 2.3.3 A discussion of repeated games and cooperation In this section we have shown that a one-shot game with a unique non-cooperative Nash equilibrium can have a cooperative SPE when it is repeated infinitely. However, note that in the repeated game, this SPE is not unique. For example, it is easy to show that the noncooperative outcome where each country plays WAR in every period constitutes a SPE also. Moreover, the Folk Theorem (Folk, because it was well known to game theorists long before it was formalized) states that for a sufficiently high time discount factor, a large number of outcomes in the repeated game can be supported as a SPE. Thus, the fact that we merely show that cooperation is a SPE is insufficient to conclude that a game of this type will always end up with cooperation. All that we managed to show is that cooperation is a possible SPE in an infinitely repeated game. Finally, let us look at an experiment Robert Axelrod conducted in which he invited people to write computer programs that play the Prisoners' Dilemma game against other computer programs a large number of times. The winner was the programmer who managed to score the largest sum over all the games played against all other programs. The important result of this tournament was that the program that used a strategy called Tit-for-Tat won the highest score. The Tit-for-Tat strategy is different from the trigger strategy defined in Definition 2.12 because it contains a less severe punishment in case of deviation. In the Tit-for-Tat strategy, a player would play in period t what the opponent played in period t - 1. Thus, even if deviation occurred, once the opponent resumes cooperation, the players would switch to cooperation in a subsequent period. Under the trigger strategy, once one of the players deviates, the game enters a noncooperative phase forever. 2.4 Appendix: Games with Mixed Actions The tools developed in this appendix are not implemented in this book, and are brought up here only for the sake of completeness. Thus, this appendix is not necessary to study this book successfully, and the beginning readers are urged to skip this appendix. Games with mixed actions are those in which the players randomize over the actions available in their action sets. Often, it is hard to
motivate games with mixed actions in economics modeling. This is not because we think that players do not choose actions randomly in real life. On the contrary, the reader can probably recall many instances in which he or she decided to randomize actions. The major reason why games with mixed actions are hard to interpret is that it is not always clear why the players benefit from randomizing among their pure actions. The attractive feature of games with mixed actions is that a Nash equilibrium (in mixed actions) always exists. Recall that Proposition 2.2 demonstrates that a Nash equilibrium in pure actions need not always exist. In what follows, our analysis will concentrate on the Top-Bottom-Left-Right given in Table 2.5. The reason for focusing on the game in Ms. β L(left) Ms. α
T(top) 0 B(bottom) 1
Table 2.5: NE in mixed actions
Table 2.5 is that we show that a Nash equilibrium in mixed actions exists despite the fact that a Nash equilibrium in pure actions does not (the reader is urged to verify that indeed a Nash equilibrium in pure actions does not exist). We now wish to modify a game with pure strategies to a game where the players choose probabilities of taking actions from their action sets. Recall that by Definition 2.1, we need to specify three elements: (a) the list of players (already defined), (b) the action set available to each player, and (c) the payoff to each player at each possible outcome (the payoff function for each player). Definition 2.13 1. A mixed action of player α is a probability distribution over playing a α = T and playing a α = B. Formally, a mixed action of player α is a probability τ, such that player α plays T with probability τ and plays B with probability 1 - τ. 2. A mixed action of player β is a probability, λ λ and plays R with probability 1 - λ
such that player β plays L with probability
3. An action profile of a mixed actions game is a list ( τ, λ) (i.e., the list of the mixed action chosen by each player).
4. An outcome of a game with mixed actions is the list of the realization of the actions played by each player. Definition 2.13 implies that the mixed-action set of each player is the interval [0,1] where player α picks a and player β picks a . The reader has probably noticed that Definition 2.13 introduces a new term, action profile, which replaces the term outcome used in normal form games, Definition 2.1. The reason for introducing this term is that in a game with mixed actions, the players choose only probabilities for playing their strategies, so the outcome itself is random. In games with pure actions, the term action profile and the term outcome mean the same thing since there is no uncertainty. However, in games with mixed actions, the term action profile is used to describe the list of probability distributions over actions chosen by each player, whereas the term outcome specifies the list of actions played by each player after the uncertainty is resolved. Our definition of the "mixed extension" of the game is incomplete unless we specify the payoff to each player under all possible action profiles. Definition 2.14 A payoff function of a player in the mixed-action game is the expected value of the payoffs of the player in the game with the pure actions. Formally, for any given action profile (λ, τ), the expected payoff to player i, i = α, β, is given by
According to Definition 2.1 our game is now well defined, since we specified the action sets and the payoff functions defined over all possible action profiles of the mixed actions game. Applying the NE concept, defined in Definition 2.4, to our mixed-actions game, we can state the following definition: Definition 2.15 An action profile (where , ), is said to be a Nash equilibrium in mixed actions if no player would find it beneficial to deviate from her or his mixed action, given that the other player does not deviate from her or his mixed action. Formally,
We now turn to solving for the Nash equilibrium of the mixed-actions extension game of the game described in Table 2.5. Substituting the payoffs associated with the "pure" outcomes of the game in Table 2.5 into the "mixed" payoff functions given in Definition 2.14 yields
Restating Definition 2.15, we look for a pair of probabilities that satisfy two conditions: (a) for a given , maximizes given in (2.6), and (b) for a given , maximizes given in (2.7). It is easy to check that the players' payoffs (2.6) and (2.7) yield best-response functions (see Definition 2.5) given by
That is, when player β plays R with a high probability (1 - λ> 1/2), player α's best response is to play T with probability 1 ( τ = 1) in order to minimize the probability of getting a payoff of -1. However, when player β plays L with a high probability ( λ > 1/2), player α's best response is to play B with probability 1 (τ = 0) in order to maximize the probability of getting a payoff of +1. Similar explanation applies to the best-response function of player β. The best-response functions of each player are drawn in Figure 2.3. Equations (2.8) and Figure 2.3 show that when β plays λ = 1/2, player α is indifferent to the choice among all her actions. That is, when λ = 1/2, the payoff of player α is the same (zero) for every mixed action . In particular, player α is indifferent to the choice between playing a pure strategy (meaning that τ = 0 or τ = 1) and playing any other mixed actions (0 nj ), then he assumes that j is honest and i is lying. Hence, in this case, the airline manager will pay ni - 2 to traveler i, and nj + 2 to traveler j. Thus, the manager penalizes the traveler assumed to be lying and rewards the
one assumed to be honest. (b) If ni = nj , then the manager assumes that both travelers are honest and pays them the declared value of the antiques. Letting n1 and n2 be the actions of the players, answer the following questions: (a) Under Definition 2.6, which outcomes are Pareto Optimal? (b) Under Definition 2.4, which outcomes constitute a Nash equilibrium for this game. 4. Consider a normal form game between three major car producers, C, F, and G. Each producer can produce either large cars, or small cars but not both. That is, the action set of each producer i, i = C, F, G is . We denote by ai the action chosen by player i, , and by πi(aC, aF, aG ) the profit to firm i. Assume that the profit function of each player i is defined by
Answer the following questions. (a) Does there exist a Nash equilibrium when
? Prove your answer!
(b) Does there exist a Nash equilibrium when
? Prove your answer!
5. Figure 2.6 describes an extensive form version of the Battle of the Sexes game given initially in Table 2.2. Work through the following problems. (a) How many subgames are there in this game? Describe and plot all the subgames. (b) Find all the Nash equilibria in each subgame. Prove your answer! (c) Find all the subgame perfect equilibria for this game. (d) Before Rachel makes her move, she hears Jacob shouting that he intends to go to the opera (i.e., play ω). Would such a statement change the subgame perfect equilibrium outcomes? Prove and explain! 6. (This problem refers to mixed actions games studied in the appendix, section 2.4.) Consider the Battle of the Sexes game described in Table 2.2. (a) Denote by θ the probability that Jacob goes to the OPERA, and by ρ the probability that Rachel goes to the OPERA. Formulate the expected payoff of each player.
(b) Draw the best-response function for each player [RJ (ρ) and RR( θ)]. (c) What is the NE in mixed actions for this game? (d) Calculate the expected payoff to each player in this NE. (e) How many times do the two best-response functions intersect? Explain the difference in the number of intersections between this game and the best-response functions illustrated in Figure 2.3.
Figure 2.6: Battle of the Sexes in extensive form
2.7 References Aumann, R. 1987. ''Game Theory.'' In The New Palgrave Dictionary of Economics, edited by J. Eatwell, M. Milgate, and P. Newman. New York: The Stockton Press. Axelrod, R. 1984. The Evolution of Cooperation. New York: Basic Books. Binmore, K. 1992. Fun and Games. Lexington, Mass.: D.C. Heath. Friedman, J. 1986. Game Theory with Applications to Economics. New York: Oxford University Press. Fudenberg, D., and J. Tirole. 1991. Game Theory. Cambridge Mass.: MIT Press. Gibbons, R. 1992. Game Theory for Applied Economists. Princeton, N.J.: Princeton University Press. McMillan, J. 1992. Games, Strategies, and Managers. New York: Oxford University Press. Moulin, H. 1982. Game Theory for the Social Sciences. New York: New York University Press. Osborne, M., and A. Rubinstein. 1994. A Course in Game Theory. Cambridge, Mass.: MIT Press. Rasrnusen, E. 1989. Games and Information: An Introduction to Game Theory . Oxford: Blackwell.
Chapter 3 Technology, Production Cost, and Demand Large increases in cost with questionable increase in performance can be tolerated only for race horses and fancy [spouses]. —Lord Kelvin 1824-1907 (President of the Royal Society)
This chapter reviews basic concepts of microeconomic theory. Section 3.1 (Technology and Cost) introduces the single-product production function and the cost function. Section 3.2 analyzes the basic properties of demand functions. The reader who is familiar with these concepts and properties can skip this chapter and proceed with the study of industrial organization. The student reader should note that this chapter reflects the maximum degree of technicality needed to grasp the material in this book. Thus, if the reader finds the material in this chapter to be comprehensible, then the student should feel technically well prepared for this course. 3.1 Technology and Cost The production function reflects the know-how of a certain entity that we refer to as the firm. This know-how enables the firm to transform factors of production into what we call final goods. In general, we refrain from addressing the philosophical question of where technological know-how comes from. However, in chapter 9 (Research and Development) we do analyze some factors that affect the advance of technological know-how.
3.1.1 The production function We assume that two inputs are needed to produce the single final good. We call these inputs labor and capital Note that we restrict our discussion to production technologies for producing one and only one type of output. In reality, many production processes yield more than one type of output. For example, an oil refinery yields a variety of oil and plastic products from the same input of crude oil. We postpone the discussion of multiproduct production activities to our analysis of the airline industry given in section 17.2. The production function represents a mapping from the amount of labor (denoted by l) and the amount of capital (denoted by k) employed in the production process to the number of units of output produced. We represent this relationship by a function f, where the number of units of output is given by Q = f (l,k). Assuming that the function f is twice continuously differentiable (with respect to both arguments), we define the marginal product of labor function (MPL (l,k)) as the amount of output increase associated with a small increase in the amount of labor. Formally, we define the marginal product of labor and capital functions by
For example, the marginal-product functions associated with the class of production functions where a, α, β > 0 are given by and
It is important to note that the marginal product of a factor is a function (not necessarily a constant) of the amount of labor and capital used in the production process. In our example, , meaning that in this production process, the marginal product of labor gets larger and larger as the amount of labor becomes scarce. So far, we have not discussed the relationship between the two factors. We therefore make the following definition. Definition 3.1 1. Labor and capital are called supporting factors in a particular production process if the increase in the employment of one factor raises the marginal product of the other factor. Formally, if
2. Labor and capital are called substitute factors in a particular production process, if the increase in the employment of one factor decreases the marginal product of the other factor. Formally, if
In our example, the reader can verify that labor and capital are supporting factors if β > 1, and substitute factors if β 1.
3.1.2 The cost function The cost function is a mapping from the rental prices of the factors of production and the production level to the total production cost. The cost function is a technological relationship that can be derived from the production function. Let W denote wage rate, and R the rental price for one unit of capital. The cost function is denoted by the function TC(W, R; Q) measures the total production cost of producing Q units of output, when factor prices are W (for labor) and R (for capital). We define the average cost function by the ratio of the total production cost to output level. Formally, the average cost function (the
cost per unit of output) at an output level Q is defined by
We define the marginal cost function as the change in total cost resulting from a 'small' increase in output level. Formally, the marginal cost function at an output level Q is defined by
As an example, consider the total cost function given by TC(Q) = F + cQ 2, . This cost function is illustrated on the left part of Figure 3.1. We refer to F as the fixed cost parameter, since the fixed
Figure 3.1: Total, average, and marginal cost functions
cost is independent of the output level. It is straightforward to calculate that AC(Q) = F/Q + cQ and that MC(Q) = 2cQ. The average and marginal cost functions are drawn on the right part of Figure 3.1. The MC(Q) curve is linear and rising with Q, and has a slope of 2c. The AC(Q) curve is falling with Q as long as the output level is sufficiently small ( ), and is rising with Q for higher output levels ( ). Thus, in this example the cost per unit of output reaches a minimum at an output level . We now demonstrate an "easy" method for finding the output level that minimizes the average cost. Proposition 3.1 If the average cost function reaches a minimum at a strictly positive output level, then at that particular output level the average cost equals the marginal cost. Formally, if Qmin > 0 minimizes AC(Q), then AC (Qmin = MC(Qmin ). Proof. At the output level Qmin, the slope of the AC(Q) function must be zero. Hence,
To demonstrate how useful Proposition 3.1 could be, we now return to our example illustrated in Figure 3.1, where TC(Q) = F + cQ2. Proposition 3.1 states that in order to find the output level that minimizes the cost per unit, all that we need to do is extract Qmin from the equation AC(Qmin) = MC(Qmin ). In our example, . Hence,
3.1.3 Duality between production and cost functions We now provide a simple illustration of the relationship between production and cost functions, for the case of a single-input production function. Suppose that only labor is required for producing the final good, and let the production technology be given by Q = f(l) = lγ, γ > 0. This production function is illustrated in the upper part of Figure 3.2, for three parameter cases where 0 1. In what follows, we show how the cost function can be derived from the production function. Let ω denote the wage rate. Now, by inverting the production function we obtain l = Q1/λ. The total cost is the wage rate multiplied by the amount of labor employed in the production process. Hence, TC = ωl = ωQ1/λ, which is illustrated in the middle part of Figure 3.2, again for the three parameter cases where 0 1. We conclude this discussion by looking at the relationship between the production and cost function regarding the expansion of the production activity. More precisely, applying Definition 3.2 to the production function Q = l λ, we have it that (λl)γ > λl γ if and only if γ > 1. Hence, this production exhibits IRS when λ > 1, CRS when λ = 1, and DRS when λ 1, there are IRS. The case of IRS is
Figure 3.2: Duality between the production and cost functions
illustrated on the right side of Figure 3.2. Under IRS, the average cost declines with the output level, reflecting the fact that under IRS the cost per unit declines with a larger scale of production, say, because of the adoption of assembly line technology. Under CRS, the cost per unit is constant, reflecting a technology where an increase in the output level does not alter the per unit production cost. The left side of Figure 3.2 reflects a DRS technology, where an increase in the output level raises the per unit production cost. Finally, recall our two-input example where . We showed that this production technology exhibits IRS if αβ > 1 and DRS if αβ 1, which is the condition under which the technology exhibits IBS. In contrast, AC(Q) is rising with Q
if 1/(αβ) - 1 > 0, or αβ a the (inverse) demand becomes vertical at Q = 0, so the demand coincides with the vertical axis, and for Q > a/b, it coincides with the horizontal axis. An example of nonlinear demand function is the constant elasticity demand function given by or , which is drawn in Figure 3.4. This class of functions has some nice features, which we discuss below. 3.2.1 The elasticity function The elasticity function is derived from the demand function and maps the quantity purchased to a certain very useful number which we call
Figure 3.4: Inverse constant-elasticity demand
the elasticity at a point on the demand. The elasticity measures how fast quantity demanded adjusts to a small change in price. Formally, we define the demand price elasticity by
Definition 3.3 At a given quantity level Q, the demand is called 1. elastic if
2. inelastic if 3. and has a unit elasticity if
For example, in the linear case, . Hence, the demand has a unit elasticity when Q = a/ (2b). Therefore, the demand is elastic when Q a/(2b). Figure 3.3 illustrates the elasticity regions for the linear demand case. For the constant-elasticity demand function we have it that Hence, the elasticity is constant given by the power of the price variable in demand function. If this demand function has a unit elasticity at all output levels.
3.2.2 The marginal revenue function The inverse demand function shows the maximum amount a consumer is willing to pay per unit of consumption at a given quantity of purchase. The total -revenue function shows the amount of revenue collected by sellers, associated with each price-quantity combination. Formally, we
define the total-revenue function as the product of the price and quantity: . For the linear 2 case, TR(Q) = aQ - bQ , and for the constant elasticity demand, . Note that a more suitable name for the revenue function would be to call it the total expenditure function since we actually refer to consumer expenditure rather than producers' revenue. That is, consumers' expenditure need not equal producers' revenue, for example, when taxes are levied on consumption. Thus, the total revenue function measures how much consumers spend at every given market price, and not necessarily the revenue collected by producers. The marginal-revenue function (again, more appropriately termed the "marginal expenditure") shows the amount by which total revenue increases when the consumers slightly increase the amount they buy. Formally we define the marginal-revenue function by For the linear demand case we can state the following: Proposition 3.2 If the demand function is linear, then the marginal-revenue function is also linear, has the same intercept as the demand, but has twice the (negative) slope. Formally, MR (Q) - a - 2bQ. Proof. . The marginal-revenue function for the linear case is drawn in Figure 3.3. The marginal-revenue curve hits zero at an output level of Q = a/(2b). Note that a monopoly, studied in chapter 5, will never produce an output level larger than Q = a/(2b) where the marginal revenue is negative, since in this case, revenue could be raised with a decrease in output sold to consumers. For the constant-elasticity demand we do not draw the corresponding marginal-revenue function. However, we consider one special case where . In this case, p = aQ-1, and TR(Q) = a, which is a constant. Hence, MR(Q) = 0. You have probably already noticed that the demand elasticity and the marginal-revenue functions are related. That is, Figure 3.3 shows that MR(Q) = 0 when ηp(Q) = 1, and MR(Q) > 0 when |ηp (Q)| > 1. The complete relationship is given in the following proposition. Proposition 3.3
3.2.3 Consumer surplus We conclude our discussion of the demand structure by a gross approximation of consumers' welfare associated with trade. We define a measure that approximates the utility gained by consumers when they are allowed to buy a product at the ongoing market price. That is, suppose that initially, consumers are prohibited from buying a certain product. Suppose next that the consumers are allowed to buy the product at the ongoing market price. The welfare measure that approximates the welfare gain associated with the opening of this market is what we call consumer surplus and we denote it by CS. In what follows we discuss a common procedure used to approximate consumers' gain from buying by focusing the analysis on linear demand functions. Additional motivation for the concept developed in this section is given in the appendix (section 3.3). Figure 3.5 illustrates how to calculate the consumer surplus, assuming that the market price is p.
Figure 3.5: Consumers' surplus
For a given market price p, the consumer surplus is defined by the area beneath the demand curve above the market price. Formally, denoting by CS(p) the consumers' surplus when the market price is p, we define
Note that CS(p) must always increase when the market price is reduced, reflecting the fact that consumers' welfare increases when the market price falls. In industrial organization theory, and in most partial equilibrium analyses in economics, it is common to use the consumers' surplus as a measure for the consumers' gain from trade, that is, to measure the gains from buying the quantity demanded at a given market price compared with not buying at all. However, the reader should bear in mind that this measure is only an approximation and holds true only if consumers have the so-called quasi-linear utility function analyzed in the appendix (section 3.3). 3.3 Appendix: Consumer Surplus: The Quasi-Linear Utility Case The analysis performed in this appendix is brought up here only for the sake of completeness; quasilinear utility is used only once in this book, in section 13.1, where we analyze two-part tariffs. We therefore advise the beginning student to skip this appendix. In this appendix, we demonstrate that when consumer preferences are characterized by a class of utility functions called quasi-linear utility function, the measure of consumer surplus defined in subsection 3.2.3 equals exactly the total utility consumers gain from buying in the market. Consider a consumer who has preferences for two items: money (m) and the consumption level (Q) of a certain product, which he can buy at a price of p per unit. Specifically, let the consumer's utility function be given by
Now, suppose that the consumer is endowed with a fixed income of I to be spent on the product or to be kept by the consumer. Then, if the consumer buys Q units of this product, he spends pQ on the product and retains an amount of money equals to m = I - pQ. Substituting into (3.4), our consumer wishes to choose a product-consumption level Q to maximize
The first-order condition is given by , and the second order by , which constitutes a sufficient condition for a maximum. The first-order condition for a quasi-linear utility maximization yields the inverse demand function derived from this utility function, which is
Thus, the demand derived from a quasi-linear utility function is a constant elasticity demand function, illustrated earlier in Figure 3.4, and is also drawn in Figure 3.6.
Figure 3.6: Inverse demand generated from a quasi-linear utility function
The shaded area in Figure 3.6 corresponds to what we call consumer surplus in subsection 3.2.3. The purpose of this appendix is to demonstrate the following proposition. Proposition 3.4 If a demand function is generated from a quasi-linear utility function, then the area marked by CS(p) in Figure 3.6 measures exactly the utility the consumer gains from consuming Q0 units of the product at a market price p0. Proof. The area Cs(p) in Figure 3.6 is calculated by
3.4 Exercises 1. Consider the Cobb-Douglas production function given by Q = lαkβ, where α, β > 0.
(a) For which values of the parameters α and β does this production technology exhibit IRS, CRS, and DRS? (b) Using Definition 3.1, infer whether labor and capital are supporting or substitute factors of production. 2. Consider the production function given by Q = lα + kα, where α > 0. (a) For which values of a does this production technology exhibit IRS, CRS, and DRS? (b) Using Definition 3.1, infer whether labor and capital are supporting or substitute factors of production. 3. Does the production function given by 4. Consider the cost function
exhibit IRS, CRS, or DRS? Prove your answer! , where F,c > 0.
(a) Calculate and plot the TC(Q), AC(Q) and MC(Q). (b) At what output level is the average cost minimized? (c) Infer whether this technology exhibits IRS, CRS, or DRS. Explain! 5. Consider the demand function Q = 99 - p. (a) At what output level does the elasticity equal -2 ? (b) At what output level does the elasticity equal -1 ? (c) Calculate and draw the marginal-revenue function associated with this demand. (d) At what output level does the marginal revenue equal zero? (e) Calculate the consumers' surplus when p = 33 and p = 66. 6. Consider the constant-elasticity demand function
(a) Solve for the inverse demand function p(Q). (b) Using (3.2), calculate the demand price elasticity. (c) For what values of is the demand elastic? For what values is the demand inelastic? (d) Using Proposition 3.3, show that the ratio of the marginal-revenue function to the inverse demand function, p(Q)/MR(Q), is independent of the output level Q.